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SECTION 1

EXECUTIVE SUMMARY

1.1 Goals and Approaches

This report is submitted in fulfillment of the final documentation
requirements for the study: Actively Controlled Structures Theory. Stringent
attitude control requirements have been placed upon certain types of future
large flexible space structures. In the light of these requirements and the
inherent flexibility of these structures, it becomes essential to consider
active control of structural vibrations to a degree not encountered in cur-
rent spacecraft[l]* as a necessary component of an overall strategy for
successful attitude control. The objective of the research reported here was
to develop the theoretical and analytical tools to support the successful
implementation of active vibration control for large flexible spacecraft.

The approaches to this objective assume the validity of finite element
representations of sufficiently high order as a model for the class of struc-

tures of interest. This permits viewing the plant to be controlled as a
finite-dimensional multivariable system; studies of control concepts and con-
troller design techniques for such systems have been appearing in the litera-
ture for some time. [2' 3 ] However, the order of a valid finite-element model
is generally too high to use for control design by known methods; a reduced-
order model must be used. This forces a reexamination of the potential appli-
cability of existing multivariable controller design methods to large space
structures. In the research program reported on here, parallel efforts in
theory and applications were initiated. For the theoretical effort, several
representative design methods were selected for careful study focusing on an
examination of the theoretical basis for each method and a search for any
potential difficulties associated with their use in reduced-order Large Space
Structures (LSS) controller design.[4] The methods initially selected are
characterized by constant-gain output feedback, the simplest form of active
multivariable control. Considerable attention was given to developing new
results, including modifications to the selected methods that may improve their
suitability for LSS controller design. Performance comparisons between con-
troller designs using the various methods applied to a common low-order struc-
tural model were made. Several of the methods that appeared most promising were
selected for additional development and evaluation using higher order struc-
tural models. For the applications effort, relatively high order models rep-
resentative of the large space structures of interest were employed. Effec-
tiveness of both passive and active local member dampers, as well as modern
modal controller feedback designs for inducing vibration damping, was studied
by simulation. The active damping techniques were studied both separately and
in combination. The effects of actuator dynamics upon member damper effective-
ness were also studied.

Bracketed superscript numerals refer to similarly numbered items in the
List of References at the end of the section.



The contents of this report are briefly summarized in the remainder of
Section 1: the scope of our research is stated, a summary of the principal
results obtained is given, and overall conclusions and recommendations based
on all of the work performed under this contract are given.

Controller designs using reduced-order finite-element tructural models
lead to the phenomenon of control and observation spillover[6 when the con-
troller is used with a higher order structural model. Section 2 reports new
results and new techniques for reduction of spillover. Conditions for elimin-
ation of spillover to selected residual modes and conditions for reduction of
spillover to other residual modes are given. A three-step approach is pro-
posed. The theory is demonstrated by a numerical example on the tetrahedral
model (cf Appendix A).

Extensions to the Kosut method of Suboptimal Output Feedback relevant
to LSS applications were reported previously in Chapter 6 of Reference 4. In
order to implement these extensions, the delicate problem of numerical solu-
tion of rank-deficient linear algebraic systems must be solved. Progress in
developing an algorithm to treat this question is reported in Section 3. A
numerical example comparing calculations using the algorithm with calculations
performed previously[4J for a two-mode model is given.

Design applications using modern modal control methodology and augmented
by member dampers was presented in Reference 5. Section 4 illustrates the
application of these techniques to the tetrahedral model.

A finite-element model fairly representative of realistic large space
structures of interest, but of reasonably low order, and having the shape of a
tetrahedron, has been developed as a common vehicle on which to evaluate var-
ious active control techniques. A complete description of this model is given
in Appendix A.

1.2 Research Scope

1.2.1 Scope of Theoretical Research

Successful active control of large flexible space structures requires

mastery of at least the following principal topics:

(1) Development of high-fidelity structural models, including expected
disturbances.

(2) Reduction to lower-order models suitable for the design of feed-
back controllers.

(3) Design of an active controller.

(4) Stability analysis--including robustness.

(5) Performance verification.

The final two topics include evaluation celative to a high-order
structural model.

2
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Although each of these topics has been considered in some degree, the
theoretical efforts have concentrated on the controller design process-in
particular, finite-dimensional control of linear multivariable systems. In
addition to examining existing design methods, specific attention has been
devoted to alleviating the adverse effects of control and observation spill-
over associated with reduced-order models, and to developing algorithms for
numerical evaluation of new design techniques. To date, studies of methods
involving dynamic compensation have been postponed, since the attendant com-
plexity in both design and implementation of such methods is particularly
unattractive for large-scale systems if a feasible alternative in the class of
constant-gain output feedback methods can be found. For analysis of flight
vehicles, structural models need to be sufficiently accurate so as to reflect
the dynamics of sensors and actuators, as well as nonlinear dynamic character-
istics of the entire structure of interest. Stability and performance esti-
mates and tradeoffs based on less representative models are certainly open to
serious question. Nevertheless, attempts to gain insight into reduced-order
multivariable controller design appropriate to large space structures can be
impeded by working with unnecessarily complex structural models at the concept
development stage. Since the controller design problem is far from solved
even for linear structural models which assume ideal sensors and actuators, the
theoretical studies have been carried out in this context.

1.2.2 Scope of Applications Research

Studies were conducted to identify the problems encountered during the
process of designing active vibration controllers. Two structures which best
represent LSS structural characteristics were chosen; a realistic LSS struc-
ture,j 51 and the tetrahedral structure (cf Appendix A). A nominal and a per-
turbed finite-element model of the realistic LSS structure were developed. Dur-
ing the control law design evaluation, a maximum of 50 modes and 32 colocated
sensor/actuator locations were retained. The nominal and perturbed finite-element
models for the tetrahedral structure had a maximum of 12 modes and 6 colocated
sensor/actuator locations. The nominal finite-element models were employed in
the controller design process and performance evaluations. Control law sen-
sitivity to structural parameter changes was determined by evaluating the
designs with respect to the perturbed model. Various sensor and actuator
types (e.g., member dampers, force effectors, torque effectors) were utilized
in order to establish preliminary instrument specifications. Actuator models
were introduced for the purpose of assessing the impact of actuator dynamics
upon overall closed-loop system stability and performance. The active modal
controller design methods investigated were the Canavin local-damper concept
and the Balas modern modal controller approach. These methods were chosen be-
cause they represent the extremes in terms of sophistication, stability and
performance.

1.3 Summary of Principal Results

1.3.1 Results from Theoretical Research

In-depth theoretical analysis and preliminary performance comparison
on the following five design methods were reported in Reference 4.

3



(1) Modal Decoupling (Canavin).

(2) Pole Assignment (Davison-Wang).

(3) Optimal Output Feedback (Levine-Athans).

(4) Suboptimal Output Feedback (Kosut).

(5) Stochastic Optimal Output Feedback (Johnson).

A synopsis of that research is given in Section 3.1 of the present report.
The principal results are briefly summarized. New and more precise stability
theorems related to the Canavin method were proved. A coherent synthesis of
the voluminous literature on the Davison-Wang method was given, including
identification of several areas where significant improvements are possible.
Extensions of the Kosut method which enable its application to systems with
redundant sensor configurations were made. This gives the potential for
significant improvements in performance. The Johnson method, still in develop-
ment, demonstrates how coupling between critical and residual modes can be
enforced so as to enhance stability. This is an original concept which con-
trasts sharply with the usually adverse effects upon stability and perfor-
mance associated with control and observation spillover. Study of the Levine-
Athans method produced an essentially negative result: the computational
difficulties associated with its application seem to outweigh its advantages.
These are simply the highlights of results from the study of design methods;
a complete statement of the results and their significance is given in
Reference 4.

Theoretical results documented in the present report concern new tech-
niques for reduction of control and observation spillover (Section 2), and
a proposed algorithm for the numerical implementation of the extended Kosut
method (Section 3). In Section 2, a systematic three-step approach for re-
ducing control spillover is given. The steps are: placement of actuators,
where possible; synthesis of actuator influences, given actuator placement
constraints; and compensation of actuator inputs to attenuate the action of
modes which contributp to control spillover. Decoupling of influential re-
sidual modes from the closed-loop system can be achieved via proper synthesis
of actuator (or sensor) influences. Conditions are given which make precise
the nature and extent of control spillover reduction possible. The techniques
and conditions'are extendable to- the dual case of observation spillover. Sec-
tion 3 delineates a careful development of an algorithm for implementing the
Kosut design method. Some sophisticated mathematical techniques are required
because of the algebraic degeneracy associated with the extensions to this
method reported in Reference 4. The important concepts of the generalized
inverse of, and the singular value decomposition of, an arbitrary rectangular
matrix are condensed from the diverse literature on the subject into a con-
cise but complete exposition. This forms the basis for developing the algo-
rithm. Pitfalls in attempting more obvious "brute force" approaches to an
algorithm are exposed.

4
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Research on the numerical implementation of the extended Kosut method
is continuing. It is expected that simulations will verify that the imple-

mentation question at the design model level is solved by the algorithm pro-
posed in Section 3. The next major task is to develop a systematic technique
for using free parameters appearing in the controller design process to achieve

the potential for performance improvement possible at the evaluation model
level. A later task of much significance for the Kosut method is to charac-
terize those classes of systems for which a stable closed-loop design using
the Kosut method is (or is not) possible.

1.3.2 Results from Applications Research

For a particular slew maneuver of a realistic LSS structure, a nominal
set of damping requirements was established, which lead to the preliminary
sensor/actuator requirements shown in Table 1-1 [see Section 2 of Reference 5].

Table 1-i. Preliminary sensor/actuator requirements
for vibration control.

Force Torque
Type/Specification Member Dampers Effectors Effectors

Bandwidth 100 rad/s 100 rad/s 100 rad/s

Maximum sensed displacement 4 pm 500 Pm 24 prad

Maximum sensed velocity 150 iim/s 8000 pm/s 600 prad/s

Nominal force/torque output 75 N 4000 N 300 N-m

The local-member-damper concept was employed to provide structural
damping augmentation as described in Section 4 of Reference 5. Although this
approach was insensitive to large parameter variations, the amount of damping
per individual mode was unpredictable, as well as the fact that certain modes
experienced a limit in achievable modal damping. This method provides a
viable approach for obtaining low levels of damping over a broad frequency
spectrum. Theoretical results show that this method is always Liapunov
stable; this conclusion is no longer valid when sensor/actuator dynamics are
introduced. Instability occurs when the phase lag of the sensor/actuator
exceeds 90 degrees within the controlled frequency bandwidth.

The modern modal controller designs described in Section 5 of Reference
5 yield optimistic results when analyzed on reduced-order evaluation models
(9 modes). When higher order evaluation models (50 modes) were used, obser-
vation and control spillover resulted in overall closed-loop instability. In
addition, system performance degraded as a function of small changes in inher-

ent structural damping.

In order to offset the adverse effects of observation and control spill-
over, structural damping augmentation controller designs (local-member-damper
concept) were incorporated into the modern modal controller design process as

5



described in Section 4 of the present report. Overall closed-loop system

stability was maintained even when evaluated with high-order models.

1.4 Conclusions and Recommendations

For successful control of large space structures, it is recognized by
the LSS community at large that the fundamental problem is the design of a
finite-dimensional compensator to control an infinite dimensional system.
To date, numerous theoretical contributions towards "solving" this problem
have been made; however, the resolution of this problem requires further
theoretical research which must be validated through appropriate design,
analysis and experimentation. As a result of our endeavors, together with
exposure to a broad spectrum of knowledge provided by the LSS community, it is
our judgment that the technical issues in LSS control technology include the
following.

(1) LSS Modeling accuracy should be known to within some specified
bounds. Modeling errors will limit achievable control system
performance. These errors may be introduced through initially
assumed structural properties or the truncation process implicit
in the finite-element method. In space, LSS parameters may
vary as a function of thermal gradients, configuration changes,
or depletion of consumables. The more strignent the mission
performance requirements, the greater the LSS model fidelity
required.

(2) Upper Atmospheric Models must be improved and verified by appro-
priate experiments. Accurate knowledge of the external forces
(e.g., earth magnetic and gravitational fields, solar wind
and radiation pressure, drag) acting upon a LSS is necessary to
satisfy precision control requirements.

(3) System Identification is necessary for the purpose of LSS struc-
tural model verification. Parameter identification techniques
must be developed such that modal frequencies, damping ratios,
and mode shapes can be accurately determined. Consideration
must be given to the type of sensors, onboard processing require-
ments, data reduction, and post-processing requirements.

(4) Sensor and Actuator specifications must be determined in order
to assess the applicability of existing hardware, as well as to
provide new directions in research and development.

(5) Control Law Design Methodology must address the following:

(a) The model reduction process which reduces the high-
dimensional finite-element model to a lower order design
model.

(b) The design method for determining reduced-order
compensators.

6



(c) The criteria for determining overall closed-loop system
stability.

(d) Direct digital design methodologies and implementation
techniques.

(e) Sensor and actuator placement techniques which yield
maximum observability and controllability.

(f) Sensor and actuator dynamics.

(g) The dynamic interaction of the attitude, vibration and,
shape control laws.
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SECTION 2

REDUCTION OF CONTROL AND OBSERVATION SPILLOVER IN
VIBRATION CONTROL OF LARGE FLEXIBLE SPACE STRUCTURES

2.1 Introduction

"Control spillover" and 'observation spillover" surface as major road
blocks to the application of state-of-the art control techniques to vibration
control of large space structures. This section presents several approaches
to their elimination or reduction.

Large space structures (LSS) deployable or errectable by the Space
Shuttle are flexible, lightweight, and lightly damped. This new class of
setellites is characterized by increased susceptibility to natural and on-
board vibration disturbances; active controllers are required for efficient
vibration suppression. Complex flexible structures commonly are analyzed by
the method of finite elements; finite-dimensional linear lumped-parameter
models are generated (e.g., by computer program NASTRAN). Various state-of-
the-art control techniques (e.g., linear-quadratic regulation, pole placement)
are used for designing LSS vibration controllers. Finite-element models for
LSS are of very high order, whereas controller design using these techniques
is possible only for systems of very low order because of computational re-

quirements and computer capability. The finite-element models are therefore
truncated with respect to modes of vibration, and the control of only a small
number of modes is considered. As a result of modal-truncation, control
spillover and observation spillover interfere with the performance of vibra-
tion controllers thus designed. Balas[ll* has demonstrated that even for a
simple flexible beam, control and observation spillover can cause closed-loop
instability of an open-loop stable beam.

To be specific, consider the fellowing standard finite-element modal
representation of LSS

2 T+ 2ZW + 0 2 B u (2-1)
F

Y = CD On + CV n (2-2)

where Z = diag{,,- .... , Q = diag{w 1 , ..., wL}, and 1 = .... *L] are
L x L matrices; i, wi' * denote respectively the natural damping ratio,
frequency, and shape of twie ith normal mode of vibration. (Natural damping in

LSS is negligibly small; i is currently considered to be about 0.005.)

Bracketed superscript numerals refer to similarly numbered items in the

List of References at the end of the section.



S(n L) denotes the corresponding normal coordinates. u - (u1 , ... ,
um) denotes the control inputs to m force actuators and BF the L x m influ-
ence matrix. y = (yl, ..., yX) denotes the observation outputs from LD dis-,

placement* sensors and LV velocity sensors (0 < 2,,L < k, 0 < v< !.); %and C V
denote the corresponding X x L influence matrices. Superscript T denotes
transpose.

In general, a very large number of vibration modes are included in **
model (2-1)-(2-2). Let {wpi, Opi ), i - 1, ..., N, denote a selected subset
for suppression; we call them primary modes for a self-explanatory reason.
Completely neglecting all nonprimary modes yields the following truncated
form of model (2-1)-(2-2).

+ 2ZppQp + p 2 PTBFu (2-3)

P PP P PnP P F

y = CD pnP + C V P  (2-4)

where'Zp, Op, and Op are similarly defined in terms of the N primary modes,
and np = (np ... , ipN) denotes the corresponding normal coordinates. Vibra-
tion control systems are then designed for this model as if it had exactly
modeled the LSS in question.

However, vibration controllers thus designed may not actually perform
as desired; the neglected modes may significantly alter the desired perform-
ance and even destabilize the closed-loop systems. Let {wRjORj}, J - 1,
..., L-N, denote the residual, nonprimary modes. Then the finite-element
model (2-1)-(2-2) can be partitioned into two parts as follows.

2 = T

rp + 2Z ip + 0pnp P TpBFu (2-5)
P PP P F

2 T

R + 2 ZR 2RflR +RnR RBFu k2-6)

y = (CD 4)PP + CV pp) + (CD4 R nR + CV0R1R) (2-7)

with Z R, QR' and 0R similarly defined, and n = (nP'nR)" Figure 2-1 illustrates
that input u to control the primary part may "spill" over to the residual part;
Balas[l] called the term JBFu in (2-6) control spillover. It also illustrates
that output y to observe tKe primary part may be "spilled" over by motions in

All forces, displacements, and velocities are in the generalized sense.

See Section 2.5 for discussions on their selection. The number N must be

small enough to make the design and implementation of the desired control
system computationally feasible within constraints.

9
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the residual part; Balas [ 1 1 called the terms CDORnR and CVORR observation
spillover. It was demonstrated in Reference I that the presence of both con-
trol and observation spillover could even destabilize a simple flexible beam.
Control spillover without observation spillover can increase response time.[21

As a matter of fact, modeling errors such as observation spillover have long
been recognized as the cause of divergence in Kalman filters.[

3 ,41

Simultaneous existence of control and observation spillover need not
always be disastrous; it may be properly utilized to improve closed-loop sta-
bility as shown by examples in Reference 5. However, no general procedure
for such an exploitation has yet been developed, and it is expected to be
rather complicated since sufficient information on all the (infinitely many)
modes of vibration is required. In this section, we consider only their
reduction.

For eliminating observation spillover, Balas l l suggested that the
sensor data be prefiltered with a comb filter. For reducing control spill-
over, Sesak[6] augmented the regular quadratic performance index by a quad-
ratic penalty on control spillover to some remaining modes; this results in a
modification on the weighting matrix on control inputs. The redyction of
observation spillover is similarly handled in the dual manner. 

6J

The reduction of control spillover to, and observation spillover from,
nonprimary modes {wRjORj} in the following absolute sense is discussed in
this report.

,TBFU(t) z 0 for all values of u(t).

CDORjnRRj(t) z 0 for all values of nR(t).

CVORJfRj (t) z 0 for all values of nR(t).

In other words, "elimination" will ,;pecifically mean

R= F

DRj -0

CVRJ = 0 (2-8)

and, "reduction" will mean

TB 0
RjBF 0

CDORj Z 0

CV ORJ 0 (2-9)

--- ---.---



A three-step approach to systematic spillover reduction is proposed here.

Step I - Elimination by proper placement of actuators and sensors.

Step 2 - Elimination by proper synthesis of actuator and sensor
influences.

Step 3 - Reduction by proper compensation of actuator inputs and
sensor outputs.

Sections 2.2 through 2.4 discuss each step as an independent approach. The
three different approaches are then combined in Section 2.5. Because of the
duality between control and observation, we concentrate on the reduction of
control spillover. Discussions and results on control spillover reduction
can easily be extended to observation spillover reduction by the duality
arguments.

2.2 Placement of Actuators

Undoubtedly, reduction of control spillover should originate from
proper placement of the actuators on the structure to be controlled. In this
section we shall first discuss the complete elimination of control spillover
(an idealistic solution), and then the elimination of control spillover to
selected nonprimary modes (a realistic solution).

The following simple theorem offers an ideal way of placing the actu-
ators for complete elimination of control spillover.

Theorem 1:

If the influence matrix B F is expressable as

BF  MOB (2-10)

F P

where B is an N x m matrix and M denotes the L × L positive definite mass
matrix of the LSS, then

0 - 0 (2-11)
RBF

With such an influence matrix, the primary control-influence matrix is B, i.e.,

T -
0PB F  s B (2-12)

Proof:

Since the mode shapes 0i are orthonormal with respect to the mass
matrix by definition, TMp 0 and OWMp - I. This fact combined with
(2-10) immediately results in (2-11) and (2-12).

12



It follows from this theorem that complete elimination of control
spillover is possible, provided the special form of influence matrix expressed
by (2-10) is realizable for some nontrivial matrix B through proper place-
ment of actuators. And, depending on the matrix B, complete control of the
primary modes is also possible; this can be seen from (2-12).

Equation (2-10) expresses an idealized situation: the elimination of
control spillover to neglected modes requires no knowledge of these modes.
Actually, it is rarely possible to place the actuators according only to the
primary mode shapes for eliminating control spillover; information on the non-

primary mode shapes is at least useful. However, computational experience
with finite-element methods indicates that only the first half, or less, of
the modeled modes can be accurately calculated; complete elimination of con-
trol spillover to all nonprimary modes is not really practical. In addition,

real structures in general may not have locations for realizing such a special
form of influence matrix, even actuators are allowed to be placed anywhere
without any constraints. Structural constraints further reduces the possi-
bility of eliminating control spillover to all the nonprimary modes. Hence,

to be practical, one should only try to eliminate control spillover to some

Judiciously selected nonprimary modes.

Let {(wSj,Sj}, j - 1, ..., M, denote a selected subset of nonprimary

modes; we call them secondary modes for a self-explanatory reason. Then the
finite-element model (2-1)-(2-2) is now partitioned into three parts, instead,
as follows.

+ 2 pp + Qpnp =  TpBFu (2-13)

S + 2Zs Q + 2 S = DB u  (2-14)

2 T
R + 2ZR 2 = RBFu  (2-15)

y - (CD0PnP + C vpAP) + (CD0 SnS + CV SAS

+ (CD$R nR + CV4 Rn R) (2-16)

with n = (np,nS,nR), where subscript "S" denotes the M secondary modes,
whereas subscript*"R" now denotes the residual L-M-N modes. For the remain-
der of this paper we shall discuss the elimination of control spillover to

these M secondary modes, and the reduction, instead of elimination, of spill-

over to residual L-M-N modeled modes.

Also, see Section 2.5 for discussions on their selection.
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Basically, to eliminate control spillover to the secondary modes is
to find an influence matrix BF such that

T - 0 (2-17)
SBF

Theorem 2:

(a) An influence matrix B F satisfies Eq. (2-17) if and only if it is
given by

BF -, (-QW 1
1 W2 + Q2)B (2-18)

where B is an arbitrary (L-M) x m matrix, Q - [QIQ 2I is a nonsingular trans-
formation, and W, is a nonsingular M x M matrix; W, and W2 result from column
operations (represented by Q) on OT, namely

[wl,w 2  Q (2-19)

(b) With such an influence matrix, the primary control-influence
matrix is

T I-2

0pBF (VIWI W2 + V2)B (2-20)

and is nonzero for some nonzero B, where V and V2 result from the same column
operations on OT , namely

[VI,V 2 ]  Q (2-21)

Proof:

(a) Sufficiency of (2-18) follows immediately from substitution of
(2-18) and (2-19) in the left-hand side of (2-17). To prove the necessity,
let Q and W1 be any such matrices and rewrite Eq. (2-17) using (2-19) as
follows

T - T -1sBF = QQW I W 2 ]  - + W 2B

From which it is necessary that, for any B

--

142

41



Since

QB F B W fww 2]

we must have

[ 2= Q B (-Q1W1 lW2 + Q2)B

BF

as was to be proved.

(b) The expression (2-20) follows directly from (2-18) and (2-21).
Assume on the contrary that the control-influence matrix thus given is iden-
tically zero for any B. Then, (2-20) implies that V2 f V1WI1W2  Consequently

PTQ = [V1,V2] = V1W1 l[W,w 2] = Viw 1 $sQ

Since Q is nonsingular, it follows that

0T= Vw - (
P 11, S

which is a contradiction to the linear independence among the mode shapes.

This theorem clearly indicates that elimination of control spillover
to all the secondary modes is possible, provided that actuators can be pro-
perly placed to yield an influence matrix BF as given by (2-18) for some Q
and B. Note that all the (L-M)m elements of B in (2-18) are adjustable. In
most cases, the transformation Q in (2-18) is not unique; more freedom in
adjusting the special form or the numerical value for B F is thus provided.

It also indicates via (2-20) that complete control of the primary modes
can be possible while elimination of control spillover to secondary modes is
being realized by proper placement of actuators. To see it, consider a con-
venient choice of column operations that make the portion W2 zero. (A Gaussian
elimination process with partial pivoting on rows of (DT is one such choice.)S
The following is a refinement of Theorem 2 in this regard.

Theorem 3:

Suppose B is a desirable primary control-influence matrix. Let Q f
[QI,Q2 ] be a nonsingular L x L transformation such that 4¢TQ is nonsingular12 51I
and DTQ is null. Then, an influence matrix BF satisfies

15



T B B (2-22)

PBF

and Eq. (2-17) simultaneously if, and only if, it is given by

B Q2( T Q + Q2B °  (2-23)
F  Q2( 2

where the superscript t denotes the (right) generalized inverse, namely

()T ) = T[j (D (2-24)

and B is an arbitrary (L-M) x m matrix such that

(0T )B0 = 0 (2-25)

Proof:

The sufficiency follows directly from substitution of (2-23) together

with (2-24) and (2-25) in (2-17) and (2-22). To prove the necessity, note
that a solution of (2-17) must be given by (2-18), namely

B F = 0Ql1Q2 ]B Q 2B (2-26)

where W 0 for such a transformation Q. Equation (2-22) therefore becomes

T0Q2B = B (2-27)

T
To solve (2-27) for B, we first claim that the N x (L-M) matrix 0PQ is of
rank N. The composite (M+N) x (L-M) matrix

muat hzve rank (M+N), so must

Ol [+: PQ2]

16



I

Consequently, Q Q2 must have rank N, since sQ has rank M. Therefore, the
T T T I

product (4pQ)(pQ) is nonsingular, and the (right) generalized inverse (2-24)
is well defined. Moreover, a solution to Eq. (2-27) therefore exists, and is
given by

B= ( Q2)t B +B
°

where B is an arbitrary matrix satisfying (2-25). Substitution of this rela-
tionship in (2-26) completes the proof of the necessity of relationship (2-23).

Theorem 3 clearly implies that if the m actuators can be so placed that
the influence matrix BF expressed by (2-23) is realized for some matrices B,
B0 , and Q, which are all adjustable, then control spillover to the M secondary
modes can be eliminated without sacrificing complete control of the N primary
modes, and vice versa. Thus, Eq. (2-23) can serve as a guide for placement
of actuators for the dual purposes: start with some B, BO, Q; examine the
resultant influence matrix computed through (2-23) to see if it is realizable;
vary B and B0 , even Q, if it is not realizable. Obviously, if exact realiza-
tion is not possible, close realization is still very desirable; control spill-
over, though not eliminated, is greatly reduced.

Before concluding this section, let us remark that Theorem 1 becomes
a specialization of Theorem 3: requiring that all nonprimary modes be the
secondary modes (i.e., that M = L-N), and setting QI = MDo Q = MT, and
BO = 0 specializes (2-23) to (2-10). S 2

2.3 Synthesis of Actuator Influences

In general, actuator locations on the structure are constrained; influ-
ence matrix BF expressed by (2-10), or (2-23), or even (2-18) may not be com-
pletely realized, hence control spillover may still be serious. On the other
hand, actuator locations may have been predetermined, or the actuators may
have already been placed; control spillover most likely will exist. Elimin-
ation of control spillover must then be accomplished by synthesizing the
existent influences of the actuators on the structure. The main idea is to
conceptually replace the m physical actuators by m' "synthetic actuators".
Denote by BI the influence matrix of the synthetic actuators and v the m'-
vector of their inputs. Then we have

T TT B u = B'vF F

Control spillover to secondary modes now becomes (Btv. Thus, if BF' can be
so chosen that 0B 0, then control spillover to the secondary modes can be
eliminated.

Consider the simplest kind of synthetic actuators formed by linear com-
bination of the influences of individual physical actuators, namely

B' - B r
F F

17



where r is an m x m' transformation to be determined. (See Figure 2-2 for
illustration.) Given an influence matrix BF, to eliminate control spillover
to the secondary modes is thus to find an m x m' matrix F such that

0TFr = 0 (2-28)

I LARGE SPACE STRUCTURE "
I I

I rI F D

II I
II I

,M , F l
vIu I I

I iI

I SYNTHETIC I
I ACTUATORS I •I I B'F I

I -II

Figure 2-2. Synthesis of control influences.

Theorem 4:

(a) A nontrivial transformation F satisfying (2-28) exists if, and
only if

A T

r = rank((DsBF) < m (2-29)

(b) Assume r < m. Then a transformation F satisfies (2-26) if, and
only if, it is given by

r = (-Q1W11w12 + Q12)r (2-30)

where r is an arbitrary (m-r) x m' matrix, Q = [Q1,Q2
] a nonsingular m x m

transformation, and W a nonsingular r x r matrix; Q1 and Q2 have dimension
11 ad rslm x r and m x (m-r) respectively; W1 1 and W12 result from column operations

(represented by Q) and row rearrangement (represented by nonsingular M x M
transformation P) on the product oTB namely

18



F w1 w 1
WI I P(DsBF)Q (2-31)
W 21 W 22J

Proof 2

ka) To prove the necessity of condition 2-29), assume on the contrary
that r > m. Then r = m < M, since the product (BF is of dimension M x m.

This implies that r = 0 is the only possible solution to (2-28). To prove its
sufficiency, presume the validity of the general expression (2-30), and claim
that r cannot be identically zero. Suppose on the contrary that it is iden-
tically zero for any P. This implies that

Q QIWIIWI

which is a contradiction to the nonsingularity of the transformation

Q [Q1,Q2].

(b) Now, we prove the sufficiency of (2-30). With (2-31), we have

I LW21 W22

2 112 1
WWI +W2

Since rank(Wll) = r = rank( T) B rank(P TB Q), it follows that

W22 = W21WI1WI2 (2-32)

Therefore, Eq. (2-28) is satisfied. To prove the necessity, rewrite Eq. (2-28)
using such nonsingular transformations Q and P as follows

0 = T BF F  = P -PITB QQ -I' = P 1

S F S F -

See Reference 7 page 47.
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where (2-31) was used. It is therefore necessary that

Wlr + wIr = o' (2-33)11 12

W21 r + W 22 = 0 (2-34)

But, in view of the equality (2-32), Eq. (2-34) is nothing but a linear
transformation of Eq. (2-33); satisfaction of (2-33) implies that of (2-34).
Now from (2-33), we must have

= -iW12

for any i. Then by definition

_WIIW12 F

Q-IF = [
Therefore, [W_1 -1

r = r (Q1WIW12 + Q2 )r

Theorem 5:

The synthesized primary control-influence matrix with the transfor-
mation r given by (2-30) is

T -1
SPB Fr = (-VWliWl2 + V)r (2-35)

where V and V result from the same column operations on the product pBF ,
namely 1 2

T

[V1,V2 ] = pBF[QI9Q2 ]  (2-36)

It is nonzero for some nonzero r if and only if no row of OTB is a linear
combination of rows of 0BF, namely, if and only if P F

/ TB
rank > rank(OsBF) + 1 (2-37)
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Proof:

Equations (2-30), (2-31), and (2-36) yield (2-35) directly

$DB r ( - r BQ []r

PP F  IWI2 + Q2)r P F

- _1 W-W11W 12

[VV[ 1112= (-VWW1 2 + V

Now, assume the matrix given by (2-34) is zero for any r. Then

V2  = WW 1W1

112

Therefore, (2-36) becomes

T-1 -1 -1

$PBFQ = VIWII[WII,WI = [VIWIY{ ] = [V WII,YIPOsBFQ

L W21 W 22J

where Y is any N x (M-r) matrix such that YW2 1 = 0. Postmultiplying by Q-1

yields

0T B VW-1 ]P TBBF = [VWI-,Y]POB F

P F 1ll S F

This implies that rows of (DBF are but linear combinations of rows of PBF.
This proves the sufficiency of condition (2-37). To prove its necessity,

assume on the contrary that at least one row of PBF is a linear combination
of rows of TBF . Then, for some nontrivial N x M matrix T, we can write

S F

(T B DTBBF = T BF

P F SF
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Consequently, the synthesized control-influence matrix is

T T SF 1 2t P B TOsBF(-QIW11W12 + Q 2)

_W -11
- TP1P~SFQ[11 12

T

h= Tp t h l B FQ o

= TP r o

for any r, where the quality (2-32) was used. This contradiction proves the
necessity of the stated condition.

The rank of M x m matrix OSB F represents the equivalent number of

independent secondary modes viewed from the input terminals, and hence the

minimum number of physical actuators required for eliminating control spill-
over to all M secondary modes. Similarly, the rank of matrix

TI
represents the minimum number of physical actuators required for both elimin-
ating control spillover to the secondary modes, and for controlling the pri-
mary modes. Note that condition (2-37) implies that the actuators must be
able to influence primary modes independently of secondary modes. Conditions
(2-29) and (2-37) together mean that the number m of physical actuators
required is at least

rank(OTBF) + 1

Consequently, placement of the actuators proper for reducing the number of
input-equivalent independent secondary modes will help reduce the required
number of actuators.

It follows immediately that if the M x m matrix T B has rank M, then
at least M + 1 physical actuators must be used. S F

Using the conditions established in Reference 5, for complete controll-
ability of primary modes, one can shown that complete controllability of the
primary modes by such m' synthetic actuators requires that the primay modes be
completely controllable by the m physical actuators. The minimum numbers of
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physical and synthetic actuators required for complete controllability of
the primary modes in conjunction with elimination of control spillover to
the secondary modes are

m > rank(T B) + max{multiplicity of wi (2-38)
mS -F Pi

1<i<N

mI > max{multiplicity of w p (2-39)
Pi

1< i<N

For condition (2-38), one can easily see that for a fixed number m of physical
actuators, reduction in the number M of secondary modes, or alternatively the
rank r of control-spillover matrix PBF, will alleviate the difficulty in
complete control of primary modes while eliminating control spillover to
secondary modes.

The validity of Theorems 4 and 5 is independent of the number m' of
synthetic actuators. Hence, m' can be chosen for any purpose. For example, 5 ]

in applying Davison's method of pole assignment to model (2-3)-(2-4) when
m > N, the m actuators must be synthesized (combined or reduced) to form at
most N synthetic actuators, namely, m' < N. Undoubtedly, (2-39) should be
satisfied in choosing m' for any case.

Example

Consider the Draper tetrahedral structure (see Appendix A). Six actu-
ators already have been placed. Choose modes 1, 2, 4, and 5 (the four line-
of-sight critical modes) as the primary modes and, to the extreme, take all
the remaining known modeled modes (i.e., modes 3, 6, 7, and 8) as the second-
ary modes. This is to examine whether it is possible, by synthesizing the
given actuator influences, to control the four primary modes without spillover
to all nonprimary modes. Note that in this example, L=8, N=4, M=4, and m=6.
Listed in the order of 3-6-7-8 (the four secondary modes) and 1-2-4-5 (the
four primary modes), the control-spillover matrix 4TB and the control-
influence matrix 4DTB are given as follows S F

P F

-0.046 -0.046 -0.271 0.077 0.077 -0.271

T 0.289 -0.289 0.289 -0.289 0.289 -0.289

S F 0.049 -0.049 -0.369 -0.320 0.320 0.369

-0.069 -0.069 0.299 0.365 0.365 0.299J

T B-0.069 -0.069 -0.017 0.112 0.112 -0.017
0.BF = 249 -0.249 -0.060 0.189 -0.189 0.060

L 0.351 0.351 -0.049 0.156 0.156 -0.049]
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Note that the control-spillover matrix has the same order of magnitude as the
control-influence matrix (in fact, elements of @pBF have a magnitude between
0.046 and 0.369, while those of tTB have only between 0.017 and 0.351).P F nlbewe0.1an0.1)
Control spillover from the physical actuators is significant. To eliminate
it by synthesizing the actuator influences, perform column operations on both
matrices by Gaussian elimination and get

1 0 0 0 10 0

-1.063 1 0 0 1 0 0

1.360 -1.278 1 0 0 0
-1.102 0 -0.653 1 0 0

[TBF J 0.247 -0.232 0.131 0 1 0

0.062 0 -0.155 0.238 -0.668 1

0.219 -0.207 -0.188 0 6.869 -0.001

0.179 0 -0.206 0.350 7.053 -10.565

- 0 0 0 0 1 ].776 -13.294"

0 0 0 0 1 0 -13.294

P -3.685 1.732 -0.933 0.317 -4.327 1.246

0 0 -1.451 1.110 7.742 -3.541

0 0 0 1.110 -3.018 -3.541

0 -1.732 0.518 0.317 1 2.668 1.248

Note that both conditions (2-29) and (2-37) are satisfied; control of the four
primary modes, as well as elimination of control spillover to the four secon-
dary modes, is possible by synthesizing the influences of the six already
placed actuators. All we need now is to determine a 2 x m' matrix f so that I
a desired transformation r can be computed from (2-30), noting that W12

W W = 0 with such column operations. First, Eq. (2-35) thereby becomes
21 22

[1 01
T'r =y -0.668 1

6.869 -0.001

L7.053 -10.565]

Second, the number m' of synthetic actuators is only required to be at least
1, according to condition (2-39), since all modes have distinct natural fre-
quencies. For demonstration, compute first for the case with m' 1 1. The
resultant synthesized control-influence matrix is a vector of four components.
Arbitrarily let the desired first and second components be I and -1, namely
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[-0.668  
1

TFrom which we get r, and hence r and pT BF' as follows

6. 190

4.414 r 1

r -4.471 T B r  -1

18.918 P F 6.869[-0. 33211
-1.842 Ll0.561j

2.254

From the resultant synthesized control-influence matrix (or more pre-
cisely, vector) above, we can see that a single input (to a single synthetic
actuator) is enough. Nevertheless, compute also for the case with m' = 2.
Again, arbitrarily let the desired first and second rows of the synthesized
control-influence matrix be [1,0] and [0,1 respectively, namely

E0 21 =[0.668 1
Then, from which we get the following r, r and P BFr

-- 7.014 13.294

-8.880 13.294 1 01 ,1 . -3.495 -1.246 T

[0.668 5.377 3.541 6.868 0.001

-5.383 3.541 i004 10.565]

3.502 -1.248

From the resultant synthesized control-influence matrix, we can see that a
double input (one each synthetic actuator) is also enough. It is not clear,
however, if it is advantageous to use more synthetic actuators than necessary,
judging from the relative magnitude of the elements in r for both cases:
these elements may be interpreted as required amplifier gains.

2.4 Compensation of Actuator Inputs

Control spillover can be reduced, though not completely eliminated, by
proper shaping of the actuator inputs. The idea is to insert a compensator
(or filter) Gc (a) to each input channel so that frequency components other
than those of primary modes will not pass without attenuation. Spillover to
virtually all nonprimary modes can be reduced this way, although the reduc-
tion may not be uniformly significant. Compensators can be used without
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having to properly place the actuators or properly synthesize the actuator
influences first; but, proper placement and synthesis certainly will make
spillover reduction by compensation easier and more effective. For generality,
the influence matrix B in this section may denote either that of physical
actuators or that of synthesized actuators.

Let the following denote the generic frequency component of the kth

input

Uk(t) = a cos wt + B sin wt (2-40)

where the amplitude p -a 2 + 82 and the phase 0 = tan - I //a may vary with
the generic frequency w. Consider the response of the i mode {,O to kth

input alone. From (2-1), we have

2 T kk~) T

ii(t) + 2yiwin(t) + wini(t) bUk M ibFk(a cos wt + B sin wt)

(2-41)

where bFk denotes the k column of matrix BF. Taking the Laplace transform
of (2-40) and (2-41) yields

T b_ as + ___(2-42)
Hi(s) = Fk (s2 + 2i + )(s2 + 2

S(2-42)

By partial-fraction expansion

T

H =a iFk F as +b + cs + dw]SH 1 (s) 2 2 2 22s2 2 + 2
(W 2 _ 2i) + 4I 22 + 2 Wis + W s +

where

2 22

-ila+ (w -~ 2i+22i )dc 2 wla -(w2 -w)

Taking the inverse Laplace transform gives the time-domain response

n Mt T *b kpe - 1iit sin (~ it +

+ T bkq sin (wt + ) (2-43)
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where

2 2 2 2 2

W i a 2C wi waO~ + 2

tan

2)22

a2 +a2 1/2
q ( 2 _)2 2 2 2)

( - wi) + 4 tW iW

T
Now assume that mode i is a residual mode and that 4ibFk # 0. Then, to reduce
the spillover of control input uk(t) to mode i is to reduce the magnitude of
its response n (t). Note first that since Ci is negligibly small, the ex-

tremely slow decaying natural oscillation (with frequency wil1- C) cannot,

and should not, be ignored in the practical sense, especially for the case
where vibration needs to be settled down within minutes or even seconds after
slewing the flexible structure. In particular, when the damping Ciwi is vir-

tually zero, the corresponding settling time is virtually infinite and the
natural oscillation will (like the steady-state forced oscillation) last for-
ever. Furthermore, it has almost the same magnitude as the forced oscillation:
for the sinusoidal input with 8 = 0, magnitude p is slightly larger than mag-

nitude q for all input frequency w; for the input with a = 0, magnitude p is
much larger than magnitude q for high input frequency w and the ratio p/q
increases with w.

Now, with a = p cos e and 8 = p sin e, it is easy to see that both mag-
nitudes p and q decrease with amplitude p of the sinusoidal input. Moreover,
examination of the dependence of magnitudes p and q on the input frequency w
easily shows that the frequency spectrum of response nli(t) spans the entire
frequency domain. Thus, an obvious way for reducing control spillover to mode
i is to attenuate all frequency components of the control input. It is an im-
practical way, however, since certain frequency components must be sufficient-
1 large, instead, for controlling the primary modes. With control influence

. ,Fk the damping ration i, and the natural frequency wi all fixed, the im-
possibility of complete elimination of control spillover while controlling
the primary mode is clear.

Attenuation of control inputs must be frequency selective. Due to light
damping, the peak magnitude of p and q at the resonant frequencies are the
basic concern in compensating control inputs. Consider the magnitude q first.
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It reaches maximum at w - 41 -2q with ; p/(2w 4i%7 Thus, the
compensator must at least be able to provide sufficient attenuation to off-

set the peak magnitude qmax at frequency wivl - 2Y2 . At this point, it is
worth pointing out that the larger the damping ratio q is, the easier it is
to attenuate the resonance peak. For example, qmax = =, for j = 0; qmax
(10/w2)p, for i= 0.05; q - (5/W )p, for ci 0.1.

Smaxntd p.Itrahsmxmmasat il-

2Next, consider the magnitude p. It reaches maximum also at w - w
for =0, but at w =w-i for a =0 ; both extreme cases have the same peak
magnitude as qmax. Therefore, the compensator must be a bandstop filter to
provide sufficient attenuation to a band of frequency components since, in
general, the inputs do not assume the extreme cases. The band must contain

both frequencies wi - 1 i and wi. It is worth mentioning that, even when C
is very small but nonzero, the difference between these two frequencies may

be significant for high frequency wi"

Now, with a compensator G (s) inserted in each control input channel,
as shown in Figure 2-3, the Laplace transform of the ith modal response becomes

H() T b Gc (S)(as + (244
Hi(s) - *ibFk (s2 + 2 s( + 2)(s2 + 2 ) (2-44)

r

LARGE SPACE STRUCTURE I
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II
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I I
I I
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eeee -IBj' + 2Zflf + n2r i
wm ~ ~ ~ B • •uI TBa

I I~

Figure 2-3. Compensation of control inputs.

Although it may sound more general or more flexible if a different compen-
sator is inserted in each channel, there is no real advantage in doing so.
For it is difficult to predetermine what frequency components will definitely
not appear in a specific control channel. especially when the control inputs
contain feedback of actual modal responses.
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Compared with (2-42), it shows that the compensator has the equivalent effect
of reshaping the (flat) control influence TbFk. For reducing control spill-
over to residual modes while preserving the control of primary modes, the de-
sign of the compensator must satisfy the following principal requirements.

(1) The real part of each pole of Gc C(s) be sufficiently negative.

(2) The real part of each zero of Gc(s) be nonpositive.

(3) Gc(s) be a bandstop filter for each residual mode frequency
component.

(4) GC (s) be a bandpass filter for each primary mode frequency
C
compenent.

Filters of various kinds of general forms can be synthesized to provide
(or to closely approximate) a desired frequency spectrum satisfying the above
requirements.[8] However, separate or combined use of the following simple
kinds of passive filters is worth considering: cascade bandpass filters with
primary-mode frequencies wpi as the centers; cascade bandstop filters with
residual-mode frequencies WRi as the centers; cascade bridge-T networks[ 9]
with

2
-RiWRi ± jRl - CRi

as zeros; low-pass filters; lag networks; lead-lag networks; lag-lag networks,

etc.

2.5 Three-Step Combined Approach

Each of the three approaches discussed in the foregoing sections can be
separately used to reduce control spillover, but a combined approach will be
more effective. The following three-step approach is a logical and natural
combination.

Step 1: Elimination of control spillover to secondary modes by proper
placement of actuators on the structure.

Step 2: Further elimination of control spillover to secondary modes
by proper synthesis of the actuator influences.

Step 3: Reduction of control spillover to residual modes by proper
compensation of the control inputs.

Figure 2-4 shows the combination of the three steps. The resultant syn-
thesizer r and compensators Gc(s) are then included in the design of control
inputs w 1 , ..., w ,. The control inputs can be open-loop feedforward slew

comands or state-feedback controls. If these three steps are followed in the
dual manner for reduction of observation spillover, the control inputs can
also be designed as output-feedback controls.
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Figure 2-4. Three-step combined approach.

The following are some worthwhile remarks.

(1) If compensators Gc (s) are added after control inputs or feed-c
back controllers are designed, the structure may be destabi-
lized. For example, the addition of low-pass filters (or
actuator dynamics), even of such a simple form as 1/(s + a),
a > 0, can cause the phase to shift below -180' before the feed-
back gains cross the 0 decibel line. In other words, all the
compensators (including actuator/sensor dynamics) should be con-
sidered a part of the system model for control design.

(2) Naturally, primary modes should contain those modes which are
critical to the specific performance desired (say, the line-
of-sight accuracy) of the structure. A judicious selection of
noncritical modes may be included as primary modes to enhance
the performance and stability of the controlled structure: for
example, those which are susceptible to environmental or onboard
disturbances, or highly sensitive to control spillover. The

number N of primary modes need not be kept constant of control
and design techniques. For example, more modes can be con-
sidered primary in direct output-feedback control than in
state-feedback control with dynamic state estimation. In the
design of output-feedback controllers, Canavin's method of
modal decoupling can include more modes in the design model
(2-3)-(2-4) because of stmplicity in the required computations

than Levine-Athan's method of optimal output feedback control.
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(3) The selection of noncritical modes for primary modes need not
be independent of the selection for secondary modes. In par-
ticular, the selection should be duly adjusted to satisfy at
least condition (2-37). For complete controllability of the
primary modes, as well as elimination of control spillover to
secondary modes via synthesis of actuator influences, it is
even necessary to assure that no single row PiBF of control
influence on primary modes is a linear combination of rows IjB
of control influence on secondary 

modes.

(4) In Step 1, the secondary modes may be those important noncritical
modes which cannot be included as primary modes for any reasons
or those nonprimary modes which have natural frequencies iden-
tical to or closely spaced with some primary-mode frequency.

(5) In Step 2, the secondary modes may be augmented by those non-
primary modes having large magnitude I I11 of control influ-
ence. Conversely, those which have negligibly small magnitude
of control influence can be deleted from the set of secondary
modes.

(6) In Step 3, in case of an extremely large number of residual modes,
the design of compensators should focus on those residual modes
having larger magnitude I JBFI1 of control influence, larger
magnitudes p and q, smaller damping ratio yi' or smaller natural
frequency w

2.6 Conclusions

Control (observation) spillover may be reduced by proper placement of
actuators (sensors). If proper placement is not possible because of struc-
tural constraints, control spillover to (observation spillover from) secondary
modes can still be eliminated by synthesizing the actuator (sensor) influences.
Alternatively, control spillover to (observation spillover from) nonprimary
modes can be reduced, to various extent, by adding some compensation to each
input (output) channel. A combined systematic use of placement, synthesis and
compensation will yield better results.
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SECTION 3

OUTPUT FEEDBACK

3.1 Synopsis of Previous Research

A survey of several selected methods for the design of controllers with
multivariable dynamic processes was recently reported.[1, 2]* Since this sec-
tion reports results arising out of the discoveries in that survey, a brief
synopsis of Reference 1 is given to provide continuity.

The survey in Reference 1 focused on the following five design methods.

(1) Modal Decoupling
[31

(2) Pole Assignment[
41

(3) Optimal Output Feedback
[5 ]

(4) Suboptimal Output Feedback
[61

(5) Stochastic Optimal Output Feedback
[7 )

These methods were selected as representative of the distinct approaches that
have been proposed in the literature for control by constant-gain output feed-
back. The primary purpose of the survey was to evaluate the suitability of
these methods for the problem of designing reduced-order controllers for multi-
variable processes of very high dimension. This problem inevitably arises in
the consideration of active control for large space structures. For each meth-
od, the following was accomplished: survey of the relevant literature; inves-
tigation in depth into the theoretical basis for the method; discovery of new
results (in some cases); and application of the method to controller design for
one vibration mode of a specific two-mass oscillator. In addition, an overall
comparative evaluation of the five methods was made, which included a detailed
performance comparison of the various designs with the two-mass oscillator.

Distinguishing characteristics of the five design methods are briefly
recalled. The plant adopted for controller design purposes is in each case a
re'*ced-order finite-element model in normal mode coordinates embodying the

structural modes considered critical for analysis of stability and control.
Model development and notation is detailed in [1; Chap. 2]. The Modal Decoupl-

ing Method introduces artificial damping through the controller in such a way
that the closed-loop equations for the critical modes are uncoupled from one
another. Generalized inverses in the sense of Moore-Penrose[8, 9] are used in
designing the controller. The principal advantage of this method is that
precise statements about stability of the complete high-order system embodying
the reduced-order controller can be made. New stability results beyond those
in Reference 3 were reported in [1; Sec. 3.5.3]. The principal disadvantage

Bracketed numerals refer to similarly numbered items in the List of
References at the end of the section.
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of the method is that stability guarantees assume colocation of sensors and
actuators. The Pole Assignment Method is an algorithm for choosing controller
gains so as to arrive at a closed-loop system in which as many of the system
poles as possible lie at or near prespecified positions in the complex plane.
The principal advantage of this method is that it provides a systematic way
of precisely adjusting the dynamic characteristics of the closed-loop system.
The principal disadvantage of this method is that, without certain restric-

* tions, not all of the closed-loop poles in the design model can be "assigned",
which may significantly affect the system performance. Certain specific sug-
gestions for improving the method were identified [1; Sec. 4.2.3]. The Op-
timal Output Feedback Method is a generalization of the optimal state regu-
lator design [10; Chap. 9] to the situation in which not all of the system
states are available for measurement. The consequent wider applicability
to real systems is the principal advantage of this method. Its principal
disadvantage is the difficulty in solving certain nonlinear algebraic equa-
tions for the feedback gain matrix. The Suboptimal Output Feedback Method
is a modification of the Optimal Output Feedback Method which admits direct
noniterative solution for the feedback gain matrix; this feature constitutes
the principal advantage of the method. Its principal disadvantage is that
closed-loop stability, even for the design model, is not assured. Extensions
to this method which make it potentially applicable to a wider class of sys-
tems, including large space structures, wer± reported [I; Sec. 6.2.3]. The
Stochastic Optimal Output Feedback Method, currently under development, at-
tempts to harmonize all available knowledge relevant to optimal output feed-
back. One unique feature of the method is its approach to the problem of spill-
over. Unlike most other methods, which seek to weaken the coupling between
critical and residual modes, this method enforces such coupling with the goal
of having the residual modes "inherit" the stability properties designed into
the critical modes.

Each of the design methods produced a stable controller for the compar-
ison example. The time-domain performance (e.g., peak amplitudes, settling time)
was best with the Suboptimal Output Feedback Method-as extended--and with the
Stochastic Optimal Output Feedback Method, while frequency-domain performance
(e.g., attenuation, distrubance rejection) was best with the Pole Assignment

Method. The other methods indicated a relative lack of performance related
to an inability to influence residual mode behavior [1; Chap. 8]. No attempt
at a definitive scientific judgment on the relative merits of the five methods
was made due to lack of an adequate data base for comparison. However, the
results for the Suboptimal Output Feedback Method and the Stochastic Optimal
Output Feedback Method were sufficiently encouraging to warrant recommendations
for further active research on these two methods.

3.2 Scope of Current Research

[1]
Since the previous report was written, additional research relevant

to output feedback hes focused on the Kosut method of suboptimal output feed-
back.[6] Extensions to the published Kosut methods that were reported in
Reference I arose principally from the observation that the linear equation for
the feedback gain matrix is algebraically consistent in all circumstances [1;
Theorem 6-61; i.e., it has an exact solution even when the coefficient matrix
is singular. Since the coefficient matrix in the gain equation is a function
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of the sensor observation matrix [1; Eq. (6-18)], this allows the method--as
extended--to be applied to systems with arbitrary sensor configurations, in
particular, those with observation matrices of less than maximum rank. Such
sensor configurations can be expected when working with reduced-order models
representing large space structures [1; Sec. 6.2.4].

The research reported in this section was directed toward developing an
algorithm, suitable for use on a high-speed computer, for implementing the
Kosut design method with the extensions reported in Reference 1. Implementation
of the method requires:

(1) Determining an "optimal" controller for a reference system having
the same dynamics as the system to be controlled, but without
explicit structure constraints on the controller [1; Sec. 6.1.2.11.

(2) Solving the Kosut necessary conditions for suboptimality relative
to the reference system [1; Secs. 6.1.2.2, 6.1.2.3].

Controller design for the reference system can be done using optimization cri-
teria and design methods at the discretion of the designer. For example, a
linear quadratic regulator design, for which reliable computational routines
exist, is acceptable. Most such routines are based on some form of Potter's
Method[ll] for solving the algebraic Riccati equation for the feedback gain
matrix. This part of the implementation is considered solved, and is not dis-
cussed further. Necessary conditions for suboptimality with the Kosut design
consist of two significant linear algebraic equations. The first has the form
[1; Sec. 6.1.2.2]

HP + PHT + I = 0 (3-1)

where H:nxn is the (known) closed-loop system matrix of the optimal reference
system, and P:nxn is a Lagrange multiplier matrix to be determined. It is
assumed that the reference system design is stable; hence H is nonsingular.
Under such hypotheses, reliable computational methods for solving equations of
the form (3-1) exist. (For example, even Riccati-equation-solving algorithms,
if used carefully, will work.) This part of the implementation is also con-
sidered solved, and is not discussed further.

The second of the Kosut necessary conditions, the gain matrix equation,
gives difficulty. It has the form [1; Eq. (6-17)]

GA = B (3-2)

where the gain matrix G:mxt is to be determined. The matrices A and B are
products, known a priori, with the special structure

A = CPCT , B = F*PCT (3-3)

where C:Rxn is the sensor matrix, P:nxn is the (positive definite) solution of
Eq. (3-1), and F*:nxn is the state-to-control feedback matrix of the reference
system. As a result of the extensions reported in Reference 1, the sensor
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matrix C is allowed to be rank deficient; hence, the matrix A in Eq. (3-2) can
be singular. Although the theory of solution for rank-deficient linear sys-
tems is completely documented in any good textbook on linear algebra (e.g.,
[12]), the numerical solution of such systems is a very delicate matter.

The purpose of this section is to detail the development of an algorithm
for the numerical solution of rank-deficient linear systems of the form (3-2).

t In Section 3.3, certain pertinent topics from analysis are outlined in order

to enable a concise presentation of the algorithm; the principal topics are
the notions of a generalized inverse for, and the singular value decomposition
of, an arbitrary rectangular matrix. In Section 3.4, numerical analysis topics
relevant to development of the algorithm are discussed; principally, reasons
why "obvious" approaches are likely to fail are given. The proposed algorithm
is given in Section 3.5; included also is a calculation with the two-mode ex-
ample of [1; Sec. 2.5], comparing results using the algorithm to results ob-
tained in Reference 1 for the solution of Eq. (3-2). Section 3.6 gives the
status of current research on numerical implementation of the Kosut design
method.

3.3 Preliminaries From Analysis

It is sufficient to discuss rank-deficient linear vector equations of
the form

Ax = b (3-4)

where A:uxv is rank deficient, b:p×l is known, and x:vxl is sought, since after
transposition, Eq. (3-2) consists of a partitioned matrix of such equations.
Moreover, for the application considered, it is only necessary to consider
the situation that Eq. (3-4) is algebraically consistent, i.e.

rank [A:b] = rank [A] (3-5)

or, equivalently, that b is in the "column space" (vector space spanned by the
column vectors) of A.

An introductory discussion of several quite sophisticated mathematical
tools is very helpful in formulating a precise treatment of Eq. (3-4). These
tools are used with increasing frequency, but are not always well understood.
Moreover, the relevant literature is quite dispersed. Therefore, a careful
presentation of the principal ideas is given next so that the basis for the
algorithm to follow can be firmly established.

3.3.1 The Generalized Inverse of a Matrix

Moore [8] was the first to formulate successfully an appropriate meaning
for the "inverse" of an arbitrary rectangular matrix. An equivalent formula-
tion was given by Penrose[ 91 . Only the case of real matrices is discussed.
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Theorem 3-1 (Penrose). Let the real matrix A:pxv have rank p. Then there
exists a unique matrix G:vxp satisfying the conditions

AGA = A (3-6)

GAG = G (3-7)

(AG)T  = AG (3-8)

(GA)T  = GA (3-9)

The matrix G of Theorem 3-1 is called the Moore-Penrose inverse of A, and is
denoted by At. The reader should note that the literature is full of a be-
wildering assortment of nomenclatures and notations for various types of
"generalized inverses", some nonunique, which have been devised for various
applications. A lengthy list of these has been compiled by Rao and Mitra
[13; Sec. 1.6]. Thus, any use of such generalized inverse concepts should
be accompanied by a precise statement of the definition and important prop-
erties. Many are generalizations of the Moore-Penrose inverse. The "pseudo-
inverse" used in the discussion of the Modal Decoupling Method [1; Secs. 3.1.2,
3.5.2] is in fact identical to the Moore-Penrose inverse (cf Theorem 3-2).
It also has an application to equations of the form (3-4) which have no. exact
solution. In such cases, the Moore-Penrose inverse "solution" x = A Tb is
the optimum least squares approximation of minimum norm [15; Chap. 31 (i.e.,
the unique vector that simultaneously minimizes j'b-Axll and 1lxli, where
I1i1lis the Euclidean norm on EV).

It is important to be able to characterize the Moore-Penrose inverse in
more concrete terms. For matrices of maximum rank, this is easy.

Theorem 3-2 (Greville[141 ). Let matrices B:xp and C:pxv have rank p. Then:

B t = (BTB) - BT (px ) (3-10)

and

C T (CCT) - 1 (vXp) (3-11)

Note that Bt is a left inverse (the only one with rows in the row space of B )

and that Ct is a right inverse (the only one with columns in the column space

of C T). It is a fact [16 1 that every rectangular matrix can be decomposed as
the product of two maximum rank matrices B, C of the type given in Theorem 3-2.
This enables an easy description of the Moore-Penrose inverse for an arbitrary
rectangular matrix.

3,
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Theorem 3-3 (Greville[16]. Let matrix A:pxv have rank p. Let B:pxp and
C:pxv be matrices of rank p for which A = BC. Then

At  = C Bt  (Vxj) (3-12)

where Ct and B represent the expressions in Eq. (3-11) and (3-10), respectively.

Note that the value of the product C B is independent of the (nonunique)
choice of matrices B, C in the decomposition A = BC.

The fundamental importance of the Moore-Penrose inverse for the study
of algebraically consistent rank-deficient linear systems is evident from the
following result.

Theorem 3-4 (Greville[141 ). Let matrices A:pxv and b:pxl be given. Assume
b is in the column space of A. Then, the general solution to Eq. (3-4) has
the form

x = Atb + x0  (3-13)

where x0 is orthogonal to the row space of A.

Note that the number of free parameters in the vector x0 is equal to the rank
deficiency of A. In particular, when A is square and nonsingular, Eq. (3-13)
reduces to the familiar (unique) solution: x = A-1 b. Theorem 3-4 is one
basic result needed for development of an algorithm for solving Eq. (3-2).
There are many other properties of the Moore-Penrose inverse that are peripheral
to the main line of development, but which are essential for a complete under-
standing of how to work (both analytically and numerically) with it. Some of
these properties are given in Section 3.7.1.

3.3.2 Singular Values and Singular Value Decomposition

The concept of an eigenvalue has no meaning for nonsquare rectangular
matrices since the range and domain spaces are of different dimension. How-
ever, the related notion of a singular value has meaning for all matrices and
turns out to be significant for many applications. The definition rests upon
the following properties of symmetric matrix products.

Fact 3-5. For any matrix A:pxv:

T T
(1) AA :wx and A A:vxv have the same rank as A.

(2) AAT and A TA have the same nonzero eigenvalues.

(3) The product of size max{l,v) has a + 6 zero eigenvalues, where
a L number of zero eigenvalues for the product of size min{p,vl,
and 6 max{p,v) - min {v,v).
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The proof of Fact 3-5 is sketched in Section 3.7.2. Note that both AAT and
ATA are positive semidefinite, and hence have real and nonnegative eigen-
values.[1 2] The singular values of a rectangular matrix A are the nonnegative

T TT
square roots of the eigenvalues of p(A,A ), where p(A,A ) denotes either AAT
or ATA, whichever is smallest in size. Determination of the rank of the
coefficient matrix is an essential part of the numerical solution for rank-
deficient linear systems (3-4). The following result shows the importance of
singular values for rank determination.

Theorem 3-6. The rank of a matrix is equal to the number of its nonzero sing-
ular values.

This central property is made more explicit by a factorization which displays
the singular values (singular value decomposition).

Theorem 3-7. Let A:pxv be a real matrix with rank p. Then:

(1) There exist orthogonal matrices U:pxu and W:vxv such that

-a 0 '
1I

10 T
A U 0  Op

0 10

where aI > ... > a > 0 are the nonzero singular values of A;
and 1- -

T
(2) the columns of U are the eigenvectors of AA , and the columns of

W are the eigenvectors of ATA.

This result is due to Golub and Kahan . An elegant proof has recently been
given by Wilkinson [191. This decomposition forms the basis of a reliable
numerical procedure for determing the rank of a rectangular matrix. Moreover,
it leads directly to a useful expression for the Moore-Penrose inverse [18].

Theorem 3-8. Let A:xv have the singular value decomposition of Theorem 3-7.
Then

°l 0

1 0 uT

A =W U
0 ai II

_p I

0 10
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It is easy to verify that this expression for A satisfies the Penrose con-
ditions (Theorem 3-1). The result suggests that the nonzero singular values
of A± are the reciprocals of those for A. This supposition is correct, and
its direct proof (Section 3.7.2) provides a good exercise in applying the
properties of the Moore-Penrose inverse given in Section 3.7.1. All of the
necessary tools for generating an algorithm for the numerical solution of
rank-deficient linear systems of form (3-4) are now in hand.

It should be observed that singular values are significant for other
purposes which, although outside the scope of this section, are relevant to
the control of large space structures. Doyle[ 2 0] has shown that singular
values, rather than eigenvalues, are the appropriate parameters to use in
constructing measures of robustness relative to stability for multivariable
systems.

3.4 Preliminaries from Numerical Analysis

Numerical solution of the gain matrix equation (3-2) involves
three distinct conceptual processes.

(1) Determination of the rank of the coefficient matrix A.

(2) Finding a particular solution.

(3) Finding the general solution incorporating arbitrary parameters
corresponding to the rank deficiency of A.

The significance of the last process (3) should be emphasized. Results of
previous work [1; Chaps. 6,8] proved that Eq. (3-2) is always solvable, and
gave an example demonstrating how free parameters in the general solution
associated with rank-deficient sensor matrices could be used to improve
closed-loop system performance. Process (3) is needed to be able to realize
this potential for performance improvement via computer implementation with
high-order systems.

In theory, determination of matrix rank is easy. One simply reduces
the matrix to row-echelon form by elementary row operations; the rank is the
number of nonzero rows in the row-echelon matrix (12; Sec. 3.41. The numer-
ical determination of matrix rank, however, is a "notoriously dangerous"
problem[21]. Gaussian elimination, the standard numerical technique for
reducing a matrix of maximum rank to row-echelon form, breaks down when applied
to rank-deficient matrices [22, Chap. 4; 23, Chap. 4; 24, p. 135]. Moreover,
many rank determination algorithms based on alternative procedures are very
unreliable due to rounding errors [24; p. 127]. To date, the only method
considered reliable for numerical determination of rank[ 21 ] is the Golub-
Reinsch algorithm for Lomputing the singular value decomposition [25]. A
FORTRAN-IV implementation of this algorithm (SVD) has been thoroughly tested,
and is included in the Eigensystem Package (EISPACK) produced by Argonne
National Laboratory[26,27]. Theorems 3-6 and 3-7 provide the conceptual
basis for rank determination by this method. It is worth observing that the
technical details of development of the Golub-Reinsch algorithm[18,21] are far
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more involved than those required simply to prove the existence of the sin-
gular value decomposition [19]1 moreover, the two approaches taken are quite
different.

Numerical determination of a particular solution to Eq. (3-2) is readily
done using the singular value decomposition routine. In determining the rank
of A, this routine computes the matrices U and W and nonzero singular values
a,, ..., o (cf Theorem 3-7). It is then a simple calculation to obtain the
Moore-Penrose inverse At (cf Theorem 3-8). A particular solution Atb to
Eq. (3-4) follows (cf Theorem 3-4). By transposition and construction of a
partitioned matrix, a particular solution

X p BAt  (3-14)

to Eq. (3-2) is obtained. Certain numerical aspects of working with singular
values should be observed here. Note that the procedure indicated in Theorem
3-8 for computing At involves taking reciprocals of the singular values. Thus,
this calculation is sensitive to the zero threshold parameter T used by the
SVD routine to determine which singular values are to be considered nonzero
(i.e., if 0 < ai < T, then ai is set to zero). This sensitivity property is
not serious because the singular values, being defined in terms of eigenvalues
of symmetric matrices, are relatively insensitive to small changes in those

matrices [21] However, the actual computation of the singular values in the
Golub-Reinsch algorithm explicitly eschews forming the products AAT or ATA
to avoid squaring and possible elimination by roundoff of small singular

values[19,2 1,25].

The general solution to Eq. (3-2) is obtained by adding to the par-
ticular solution X of Eq. (3-14) the general solution to the homogeneous
equation P

XA = 0 (3-15)

This may be obtained by using a structure theorem similar to Theorem 6-3 of

[1], but which is formulated in terms of matrix parameters in the singular
value decomposition.

Theorem 3-9. Let A:Lxn, xO:mx£ be matrices. Denote r A rank (A). Then X0

satisfies the homogeneous equation XA - 0 if and only if XO is a product of
the form ruT, where r =[_ F'] is an mxt matrix whose first r columns are zero,
and whose last 1-r columns are arbitrary, and U is an orthogonal £xt matrix
whose columns are eigenvectors of AAT.

The proof of this result parallels that given for Theorem 6-3 of [1]. To
implement this result for the present application, one simply forms

Xc ruT (3-16)
c
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with r as in Theorem 3-9 and U taken from the singular value decomposition of
A (cf Theorem 3-7). The general solution to Eq. (3-2) is thus

X E X + X BAt + ruT  (3-17)p c

and contains m • (k-r) arbitrary parameters, where m is the number of control
variables, Z is the number of output variables, and r is the rank of the
sensor matrix.

3.5 Algorithm for Solving Kosut's Gain Equation

3.5.1 Statement of Algorithm

A concise statement of an algorithm for solving the gain equation (3-2)
associated with Kosut's design method as extended l] can now be given. Recall
that the sensor matrix C:Zxn is a parameter of the reduced-order design model,
while the feedback matrix F*:mxn and the multiplier matrix P:nxn are results
from antecedent design calculations.

Step 1. Compute the rank of the coefficient matrix.

A T
(a) Compute A = CPCT . [cf Eq. (3-3)]

(b) Compute the singular value decomposition of A, obtaining matrices
U, W, and numbers op .. a. ar . [cf Theorem 3-71

r'

(c) The (numerical) rank of A is r. [cf Theorem 3-6]

Step 2. Compute the rank of the augmented matrix.

(a) Compute B = F*PC. [cf Eq. (3-3)]

(b) Repeat Step 1 for the augmented matrix [A

(c) Check that rank[-] is r. [1; Theorem 6-6]

If this test fails, terminate execution; an error has occurred.

Step 3. Find a particular solution.

(a) Compute A , using the parameters U, W, and o, ... , r from

Step 1(a). [cf Theorem 3-81 r

(b) Compute the solution X = BA [cf Eq. (3-14)]
p
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Step 4. Find the general solution.

(a) Select an mx(I-r) free-parameter matrix r'.

(b) Form the mxr matrix r = [oir'].

AT(c) Compute the homogeneous solution X C ruT, using the matrix U
from Step 1(a). [cf Theorem 3-9] C

(d) Compute the general solution X = Xp + Xc , using the results of
Steps 3(b) and 4(c). [cf Eq. (3-17)]

General selection criteria for choosing the free-parameter matrix r' in Step
4(a) have yet to be established; specific examples have been given previously
[I; Sec. 6.3.2].

3.5.2 Numerical Example

The general solution to the Kosut gain equation (3-2) has been determined
analytically for the two-mass oscillator [1; Eq. (6-45)]:

-0+ 2

G(E:,6) (3-18)

-6 - + +62 !_

where o = 0.59708155, i"2/A; = -0.42539053, i/12 -2.3507811.

This section compares result (3-18) with the general solution obtained by using
the algorithm proposed previously in Section 3.5.1.

In applying the algorithm to this example, the matrices C, P, and F*
computed in [1; Sec. 6.3] are used:

C = [0 -0.85689010]

0 0.36451293

= [1.1373892 7 .55
[F .066389774 0.516096411

L0.028241581 -0.21954252 9.
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Results for each step of the algorithm are given in the following. For this
comparison, calculations for the singular value decomposition were done using
direct spectral analysis of the operators AAT and ATA, instead of using the
more accurate Golub-Reinsch algorithm.

Step 1.

[ 5.4611116 -2.3231052

L-2.3231052 0.98822692]

(b) Eigenvalues of AAT are A = 41.593968, X2 = -7.0 x 10- 8
(A2 is "reset" to zero).

Singular values of A: a, = x1 = 6.4493386, a2 = 0.

1 2~
0.92020151 0.391445011=~ t u1U W [u 2

-0.39144499 0.92020150 u3  u4

(c) Numerical rank of A = 1.

Step 2.

-3.2607290 1.3870832b
(a) B -- = - J

1.3870832 -0.590052061

(b) Denote A -~-J A2 - [t2y
Eigenvalues of A A are Z = 54.150321, 1 - 10- 7 ± i 6.558 10 . 4

1/2
(i2,'3) "reset" to zero). Singular values of AI: s I = £1 = 7.3586902,

A AT 18s2 = 0 = s3" Eigenvalues of A 2AT are £i = 43.866129, £2£3 = -5 x 10-
±  2.943 x2 10- 4 ( . "reset" to zero). Singular values of A2 : s 1/2

(c) Numerical rank numerical rank (A

numerical rank (A2) = I
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1 0 [0.13129576 
-0.0558519711

( tL 0 0 -0.055851971 0.02 3 758 8 98J

(b)t -0.50559122 0.2150737] [x 1
[

2  x2J0.21507371 -0.091490317] x2l x 3

The reader may verify that, using Xp, we have X A = B to within seven
significant digits. p p

Step 4.

(a) Let y1 , Y2 be arbitrary [m - (k - r) = 2 • (2 - 1) 2]

0 Y
(b) I'

.39144501 72 0.92020150 y2
= 0.39144501 y12 0.92020150 y 2

Note that:

-5 x 10- 9 72 -4.4 x i0 - 8 72
X AI

L 5 10 ". 2 -4. x 10 8 Y

x I + Y1u2  x2 + 71u4-

(d) X - X + X I (3-19)p c

x 2 + Y2 u2  x3 + Y2u4 J
where the xi uj areas defined in Steps 3(b) and 1(b), respectively.

Changing parameter variables from (y1,y2) to (c,6) as follows:
A A

£ x2 -Y 1 u4  , 2 - 2
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enables (3-19) to be rewritten as

X= (3-20)
- + 6r

A A AA

where £ 0.59708154, Pi = 0.59708151, p -0.42539054, T = -2.3507810, which
gives excellent agreement with the analytical solution (3-18).

3.6 Status of Current Research

The specific goal of the current phase of research related to Kosut's
method of Suboptimal Output Feedback is to develop a systematic numerical
procedure that is capable of realizing the potential for closed-loop perform-
ance improvement embodied in the extensions reported in Reference 1. The
algorithm proposed in Section 3.5.1 is a necessary step. Current plans call
for immediate coding of the algorithm for testing on the two-mass oscillator
example of [1; Sec. 6.3], and on a higher order example (e.g., tetrahedral
model; cf Appendix A). Once the reliability of this algorithm (including any
modifications subsequently found necessary) has been established, subsequent
research will focus on developing systematic techniques for selecting the
free parameters in the general solution (3-19) so as to improve closed-loop
performance.

3.7 Appendices

3.7.1 Additional Properties of the Moore-Penrose Inverse

The principal characterizations of the Moore-Penrose inverse have been
given in Section 3.3.1. However, in order to be able to use this tool effec-
tively, its properties need to be examined in greater detail. The difficulty

in using some recent textbooks on the subject (e.g., [13], [15]) is that they
present so much detail that a casual reader is hard pressed to focus on the
properties important for his application. The properties listed in the fol-
lowing give insight into the Moore-Penrose inverse sufficient for the appli-
cations discussed in this report.

Let A:pxv be a rectangular matrix.

Theorem 3-10. Elementary Algebraic Properties.

() Interchangeable: (AT) = (A+)

(2) Reflexive: (Ai ) = A

(3) Consistent: If p = v, and A is nonsingular, then A = A

The basic reduction properties of the Moore-Penrose inverse may be viewed

geometrically as follows:
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Theorem 3-11. Elementary Geometric Properties.

(1) Projective:

(a) AA :pxp is a projection of E onto the column space of A;
i.e., x c (column space of A) <=-=--> AAtx = x

t ±(b) A A:vxv is a projection of E onto the column space of A
i.e., y c {column space of At) - AtAy = y

(2) Rank Preserving: rank (AAt ) = rank (A ) = rank (A) = rank (A tA), T t t T t
(3) Symmetric: (AAt)T  AA (A A) A A

T =)The symmetric operators AA , ATA and projection operators AAt, AtA have the
following important properties:

Theorem 3-12. Composite Properties.

T t T t T
(1) Reduction: A (AA ) = A = (A A)A

A[A T(A T) ] = A = [(AT ) tA T]A

(2) Inversion of symmetric operators: (AAT ) = (A ) TA

(ATA)t = At(At)
T

(3) Inversion of projection operators: (AAt ) = AAi

(AtA)t = AtA

Theorem 3-3 and properties (2) and (3) of Theorem 3-12 give special cases
where the property:

(XY) = YtX

holds. Unfortunately, this property does not hold in general [17].

3.7.2 Additional Results Relating to Singular Values

The proof of Fact 3-5 about symmetric matrix products is briefly sketched.

Proof of Fact 3-5.

A
To be specific, assume p v. Denote p rank (A).
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(1) We show only that rank (AAT) = rank A. Since Range (AA
T) C

Range (A): rank (AAT) rank (A). By the determinantal
criterion for rank [12; Sec. 4.5], there exist row and column
indices 1 iI < ... < i P , 1 jI < ... < j : v such that

the pxp submatrix Ai I, .... i Pjl .... j P], consisting of rows

ill . and columns Jl, ... , jp of A, has nonzero determinant.

T
Denote E = (AAT)[i, .... ili I, .... i ], and observe that

E = A[i1, .... i1, ..., v]AT[l, .. vli I, ...'. i ]. Using
P P

the formula for determinants of products of rectangular matrices
[12; Sec. 4.6], we have

det E = detA[i, i "ul,. ..,a I det AT[n I, ,e Ii • i. ]
I l ...< "''P, . '

det 2  A[i I ..... iJ .... jo]P > 0,

so rank (AA T ) p.

(2) It is sufficient to show that a nonzero eigenvalue of AAT is
also an eigenvalue of ATA. If X # 0 is an eigenvalue of AAT,
there exists x # 0 such that A(ATx) ='Ax. Thus, y ATX # 0,

and (ATA)y = ATAx = Ay.

(3) If AAT has a zero eigenvalue, then det (AAT) = 0. Using result
(1), we have rank (ATA) = rank (AA) < p, so det (ATA) is also
zero. Moreover, using result (2), ATA can have no nonzero
eigenvalues distinct from those of AAT..

The connection between the singular values of a matrix A and those ofA is clarified by noting the following fact regarding the inversion of eigen-
values for symmetric matrix products.

Lemma 3-13.

Assume X * 0. Then:

I A aT -1 t T
(1) A-IS an e-getivalue of A A is an eigenvalue of (A ) A

T -1 t tT(2) X is an eigenvalie of A A <=> A is an eigenvalue of A (A )

Proof of Lemma 3-13.

T
(1) (=> part) By hypothesis, there exists x # 0 such that AA x = Ax.

Using reduction property (1) of Theorem 3-12: AtAx = (AtAAT)x =
ATx. Moreover, x = Ay, with y ATx/X. Using property (1) of
Theorems 3-10 and 3-12: (A)TAtAx -[(AT)+ATA]y = Ay = x.
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(2) ( = part) Set B AT and use (1) ( )

(1)/(2) (<---part) Set B A , 1= X and use (2)/(I)(

property (2) of Theorem 3-10 is required.E

This lemma leads immediately to the expected result about singular values:

Theorem 3-14. Assume o # 0. Then:

-1
a is a singular value for A <-> a is a singular value for A
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SECTION 4

STRUCTURAL DAMPING AUGMENTATION AND MODERN MODAL
CONTROLLER DESIGN METHODOLOGY

4.1 Introduction

This section presents design methodology for active vibration suppres-
sion in a large space structure (LSS).[I, 2 ]* The fundamental concepts are
based on the Canavin[3,4 ] member-damper approach and the Balas[ 5-8] modern
modal controller (MMC). Member dampers[ 9I are employed throughout the struc-
ture as vibration control devices. These devices may be thought of as elec-
tronic dashpots which can deliver a restoring force proportional to velocity.
Structural damping augmentation (SDA) is achieved by configuring the member
dampers such that the inherent damping of the structure is increased. This
SDA is sufficient to offset control and observation spillover that result in
MMC designs when composite closed-loop systems are evaluated. The tetrahedral
model is employed as an example throughout this section.

4.2 Tetrahedral Model

The finite-element representation of the tetrahedral model (see Appen-

dix A for details) is shown in Figure 4-1. This model contains 10 nodes,

NODE NUMBER

TRUS ELEMENT

NUMBER

6 7

Figure 4-1. Finite-element representation of

tetrahedral model.

Bracketed numerals refer to similarly numbered items in the List of
References at the end of the section.
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each with three degrees of freedom, and 12 truss elements which are cap-

able of resisting only axial force. Masses are lumped at nodes 1 through 4.
The node coordinates and element connectivities are listed in Appendix A.
This structure is supported by pinned supports at nodes 5 through 10. An
eigenvalue analysis of the nominal model yielded the results listed in Table4-1.

Table 4-1. Modal natural frequencies----nominal case.

Mode rad/s Hz

1 1.342 0.2136

2 1.665 0.2650

3 2.891 0.4601

4 2.957 0.4707

5 3.398 0.5408

6 4.204 0.6692

7 4.662 0.7420

8 4.755 0.7568

9 8.539 1.359

10 9.250 1.472

11 10.285 1.637

12 12.905 2.054

Six colocated sensor/actuator pairs are assumed to act in parallel
with truss elements 7 through 12, as shown in Figure 4-2. The sensor is cap-
able of providing relative velocity and position information. The actuator
can exert a force in the axial direction of the truss element. For the pur-
poses of this section, the sensor/actuator pairs are mechanized as member-
damper devices. Each member damper senses the rate of change in length
(velocity) of its corresponding truss element or strut. These devices also
have the capability to exert equal and opposite forces at the extremes of each
strut in opposition to the sensed velocity.

4.3 Structural Damping Augmentation

Henderson [3 investigated the capability of member dampers to suppress
modal vibrations of a space frame structure. It was shown that the amount of
damping per individual mode is unpredictable, as well as the fact that cer-
tain modes experience a limit in achievable modal damping. Canavin[4] showed

that the closed-loop composite system with local member dampers is always
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Figure 4-2. Member-damper locations on tetrahedral model.
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Liapunov stable; hence, this type of velocity feedback cannot destabilize
the structure even when the frequencies and mode shapes change drastically.
Figure 4-3 presents a block diagram of an SDA controller with the tetrahedral
model.

6FORCE

ACTUATORS
TETRAHEDRAL MODEL 0 6 VELOCITY

e 12 MODES 0SENSORS

* 6 COLOCATED MEMBER DAMPERS

STRUCTURAL DAMPING AUGMENTATION

Figure 4-3. Structural damping augmentation.

The SDA controller multiplies each velocity output by a gain "-k" and
provides the resulting command to the corresponding colocated force actuator.
Table 4-2 shows the percent of critical damping achievable for various gains.
Note that increasing the gain does not guarantee a corresponding increase in
damping. Modes 1 and 2 initially increase in percent damping; however, for
k > 10, the amount of damping decreases as the gain is continually increased.
These two modes never reach 10 percent of critical damping. This result cor-
responds to poor observability cr control authority with respect to sensor or
actuator placement (see Section 2).

4.4 Modern Modal Controller

The modern modal controller design philosophy as developed by Balas
[5- 8 ]

is represented by Figure 4-4. The procedures for determining the regulator
and observer gains with a specified degree of stability are given in Ref-
erences 1 and 2. The resulting MMC is then analyzed with respect to a larger
dimensional evaluation model, where it is possible that the observation and
control spillover will cause an unstable closed-loop system. Investigations [1 ,2]
have shown that evaluations with reduced-order models tend to be overly op-
timistic and, in general, MMC designs were unstable when evaluated with very
high order models. This result promoted the concept of offsetting observa-

tion/control spillover with structural damping augmentation.
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U I REDUCEDORDER Y
I DESIGN MODEL

MODERN MODAL CONTROLLER

REGULATOR X LUENBERGER L

GAINS OBSERVER

Figure 4-4. Modern modal controller design.

4.5 Structural Damping Augmentation and Modern
Modal Controller

The adverse effect of observation and control spillover exhibited by
MMC designs is always possible. If the structure had sufficient inherent
damping, the effects of spillover could be eliminated. The closed-loop com-

posite system poles would still migrate toward the right-hand s-plane, but
not enough to destabilize it. In other words, the more inherent stability
that a physical system has, the more energy required to destabilize it. The
inherent structural damping can be enhanced by the SDA controller described
previously.

For the tetrahedral model, it was arbitrarily decided that a MMC
should provide at least 10 percent of critical damping in modes 1, 2, 4,
and 5. Therefore, the reduced-order model consisted of only these four modes.
Figure 4-5 shows the frequency spectrum of the four controlled modes and the
remaining residual modes used in the 12-mode tetrahedral evaluation model.

CONTROLLED

S2 '  "4RESIDUAL
R ESI DUA

6 78 910 12

1 2 3 4 5 6 7 8 910 20

rad/s

Figure 4-5. MMC frequency spectrum.
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The four-mode design model was augmented with the SDA controller as shown in
Figure 4-6 prior to designing the MMC. Therefore, the combined design plant

COMBINED DESIGN PLANT

+ 4-MODE REDUCED- /
ORDER DESIGN MODEL

MEMBER DAMPERS

k = 0.5

MODERN MODAL CONTROLLER

' R-EGULATOR -- x LUENBERGER =.

GAINS OBSERVER

Figure 4-6. MMC design model with member dampers.

is representative of the physical system that the MMC must control. Using an
alpha-shift of 1.75, and quadratic weights of qii = 1, and ri. = 10, the
regulator/observer gains were determined as described in References 1 and 2.
The resulting regulator and observer poles are given in Table 4-3. This MMC
utilizes the same six-member dampers shown in Figure 4-1. The evaluation is

Table 4-3. Four-mode MMC, regulator/observer poles.

Regulator Poles Observer Poles

Mode A+BK Damping Frequency A-GC
(%) (rad/s)

1 -0.348 ± j1.34 25.1 1.39 -0.349 ± j1.34

2 -0.345 ± j1.66 20.3 1.70 -0.351 ± j1.67

4 -0.320 ± j2.96 10.8 2.97 -0.429 ± j2.96

5 -0.310 ± j3.40 9.1 3.41 -0.497 ± j3.41
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performed by combining the SDA controller and the MMC with the full 12-mode
model. Table 4-4 shows that the closed-loop eigenvalues of the combined
SDA/MMC with the nominal 12-mode tetrahedral model are stable. The augmented
structural damping did offset the adverse effect of observation and control
spillover. However, the regulator- and observer-pole locations have changed
as can be seen by comparing Tables 4-3 and 4-4. One complex pole pair only
has 2.5 percent damping. It is not obvious that this is a regulator pole or
an observer pole or, perhaps, the pole of residual mode 3. Therefore, an
important consideration, which has been left out of this analysis, is the
system performance achievable with this control-law design.

Table 4-4. SDA/MMC closed-loop eigenvalues for
12-mode tetrahedral model.

Frequency
Real Imag Damping Ratio (rad/s)

-0.074833 2.958717 2.528428E-02 2.959663E+00
-0.312172 3.406399 9.126043E-02 3.420673E+00
-0.491579 3.392426 1.434070E-01 3.427856E+00
-0.330479 2.998654 1.095457E-01 3.016810E+00
-0.428623 2.902269 1.461007E-01 2.933749E+00
-0.163467 1.783080 9.129375E-02 1.790557E+00
-0.419061 1.400616 2.866425E-01 1.461963E+00
-0.098586 1.453893 6.765264E-02 1.457232E+00
-0.392546 0.961353 3.780264E-01 1.038408E+00
-0.125000 4.202623 2.973018E-02 4.204479E+00
-0.164013 5.019223 3.265947E-02 5.021900E+00
-0.248298 5.784401 4.288593E-02 5.789727E+00
-0.113946 8.732386 1.304752E-02 8.733128E+00
-0.144207 9.520482 1.514526E-02 9.521573E+00
-0.046912 10.295897 4.556283E-03 1.029600E+01
-0.007336 12.907702 5.683647E-04 1.290770E+01

4.6 Summary and Conclusions

The local-member-damper concept (SDA controllers) is not satisfactory
for providing high levels of modal damping; however, it is satisfactory when
augmenting the structural damping for the purposes of eliminating the adverse
effect of observation/control spillover. The MMC designs can yield optimistic
results when analyzed on reduced-order models as compared to higher order
evaluation models. The SDA/MMC design concept presented in this section pro-
vides a viable approach for designing stable closed-loop systems.
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